Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Flexible Self-Aligned Double-Gate IGZO TFT

Identifieur interne : 000124 ( Main/Repository ); précédent : 000123; suivant : 000125

Flexible Self-Aligned Double-Gate IGZO TFT

Auteurs : RBID : Pascal:14-0051107

Descripteurs français

English descriptors

Abstract

In this letter, flexible double-gate (DG) thin-film transistors (TFTs) based on InGaZnO4 and fabricated on free standing plastic foil, using self-alignment (SA) are presented. The usage of transparent indium-tin-oxide instead of opaque metals enables SA of source-, drain-, and top-gate contacts. Hence, all layers, which can cause parasitic capacitances, are structured by SA. Compared with bottom-gate reference TFTs fabricated on the same substrate, DG TFTs exhibit a by 68% increased transconductance and a subthreshold swing as low as 109 mV/dec decade (-37%). The clockwise hysteresis of the DG TFTs is as small as 5 mV. Because of SA, the source/drain to gate overlaps are as small as ≃ 1 μm leading to parasitic overlap capacitances of 5.5 fF μm-1. Therefore a transit frequency of 5.6 MHz is measured on 7.5 μm long transistors. In addition, the flexible devices stay fully operational when bent to a tensile radius of 6 mm.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0051107

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Flexible Self-Aligned Double-Gate IGZO TFT</title>
<author>
<name sortKey="M Nzenrieder, Niko" uniqKey="M Nzenrieder N">Niko M Nzenrieder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Voser, Pascal" uniqKey="Voser P">Pascal Voser</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petti, Luisa" uniqKey="Petti L">Luisa Petti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zysset, Christoph" uniqKey="Zysset C">Christoph Zysset</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="B The, Lars" uniqKey="B The L">Lars B The</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vogt, Christian" uniqKey="Vogt C">Christian Vogt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salvatore, Giovanni A" uniqKey="Salvatore G">Giovanni A. Salvatore</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Troster, Gerhard" uniqKey="Troster G">Gerhard Tröster</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Zürich 8092</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0051107</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0051107 INIST</idno>
<idno type="RBID">Pascal:14-0051107</idno>
<idno type="wicri:Area/Main/Corpus">000155</idno>
<idno type="wicri:Area/Main/Repository">000124</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0741-3106</idno>
<title level="j" type="abbreviated">IEEE electron device lett.</title>
<title level="j" type="main">IEEE electron device letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doped materials</term>
<term>Flexible structure</term>
<term>Gallium oxide</term>
<term>Indium oxide</term>
<term>Plastics</term>
<term>Self aligned technology</term>
<term>Spurious capacity</term>
<term>Thin film transistor</term>
<term>Tin addition</term>
<term>Top contact configuration</term>
<term>Transconductance</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Technologie autoalignée</term>
<term>Transistor couche mince</term>
<term>Addition étain</term>
<term>Capacité parasite</term>
<term>Transconductance</term>
<term>Matière plastique</term>
<term>Oxyde d'indium</term>
<term>Structure flexible</term>
<term>Oxyde de gallium</term>
<term>Oxyde de zinc</term>
<term>Matériau dopé</term>
<term>ITO</term>
<term>Configuration top contact</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matière plastique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this letter, flexible double-gate (DG) thin-film transistors (TFTs) based on InGaZnO
<sub>4</sub>
and fabricated on free standing plastic foil, using self-alignment (SA) are presented. The usage of transparent indium-tin-oxide instead of opaque metals enables SA of source-, drain-, and top-gate contacts. Hence, all layers, which can cause parasitic capacitances, are structured by SA. Compared with bottom-gate reference TFTs fabricated on the same substrate, DG TFTs exhibit a by 68% increased transconductance and a subthreshold swing as low as 109 mV/dec decade (-37%). The clockwise hysteresis of the DG TFTs is as small as 5 mV. Because of SA, the source/drain to gate overlaps are as small as ≃ 1 μm leading to parasitic overlap capacitances of 5.5 fF μm
<sup>-1</sup>
. Therefore a transit frequency of 5.6 MHz is measured on 7.5 μm long transistors. In addition, the flexible devices stay fully operational when bent to a tensile radius of 6 mm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0741-3106</s0>
</fA01>
<fA02 i1="01">
<s0>EDLEDZ</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE electron device lett.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Flexible Self-Aligned Double-Gate IGZO TFT</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MÜNZENRIEDER (Niko)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VOSER (Pascal)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PETTI (Luisa)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZYSSET (Christoph)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BÜTHE (Lars)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VOGT (Christian)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SALVATORE (Giovanni A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TRÖSTER (Gerhard)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>Zürich 8092</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>69-71</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222V</s2>
<s5>354000501676680230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0051107</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE electron device letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this letter, flexible double-gate (DG) thin-film transistors (TFTs) based on InGaZnO
<sub>4</sub>
and fabricated on free standing plastic foil, using self-alignment (SA) are presented. The usage of transparent indium-tin-oxide instead of opaque metals enables SA of source-, drain-, and top-gate contacts. Hence, all layers, which can cause parasitic capacitances, are structured by SA. Compared with bottom-gate reference TFTs fabricated on the same substrate, DG TFTs exhibit a by 68% increased transconductance and a subthreshold swing as low as 109 mV/dec decade (-37%). The clockwise hysteresis of the DG TFTs is as small as 5 mV. Because of SA, the source/drain to gate overlaps are as small as ≃ 1 μm leading to parasitic overlap capacitances of 5.5 fF μm
<sup>-1</sup>
. Therefore a transit frequency of 5.6 MHz is measured on 7.5 μm long transistors. In addition, the flexible devices stay fully operational when bent to a tensile radius of 6 mm.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Technologie autoalignée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Self aligned technology</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tecnología rejilla autoalineada</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transistor couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thin film transistor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transistor capa delgada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Capacité parasite</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Spurious capacity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capacidad parásita</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transconductance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Transconductance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transconductancia</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Matière plastique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Plastics</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Material plástico</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure flexible</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Flexible structure</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura flexible</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxyde de gallium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Gallium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Galio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Configuration top contact</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Top contact configuration</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>062</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000124 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000124 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0051107
   |texte=   Flexible Self-Aligned Double-Gate IGZO TFT
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024